Predição do tráfego de rede de computadores usando redes neurais tradicionais e de aprendizagem profunda
نویسندگان
چکیده
This paper compares four different artificial neural network approaches for computer network traffic forecast, such as: (1) Multilayer Perceptron (MLP) using the Backpropagation as training algorithm; (2) MLP with Resilient Backpropagation (Rprop); (3) Recurrent Neural Network (RNN); (4) deep learning Stacked Autoencoder (SAE). The computer network traffic is sampled from the traffic of the network devices that are connected to the Internet. It is shown herein how a simpler neural network model, such as the RNN and MLP, can work even better than a more complex model, such as the SAE. Internet traffic prediction is an important task for many applications, such as adaptive applications, congestion control, admission control, anomaly detection and bandwidth allocation. In addition, efficient methods of resource management, such as the bandwidth, can be used to gain performance and reduce costs, improving the Quality of Service (QoS). The popularity of the newest deep learning methods have been increasing in several areas, but there is a lack of studies concerning time series prediction, such as Internet traffic.
منابع مشابه
Otimização da Função de Roteamento para a Engenharia de Tráfego em Redes IP
This work presents an alternative analysis for the shortest path optimal routing problem and proposes novel heuristic methods to solve it. In practical terms, a solution for the shortest path optimal routing problem determines the link weights that optimizes a computer network operating under standard routing protocols (e.g. OSPF). We based our solution on traffic engineering techniques that re...
متن کاملRedes Complexas Aplicadas no Reconhecimento de Faces
Este artigo apresenta uma nova metodologia para o reconhecimento de faces, um importante e difícil problema que tem sido estudado pela comunidade de visão computacional e reconhecimento de padrões. A metodologia utilizada modela a imagem de uma face através de uma rede complexa e medidas são extraídas sobre essas redes para a composição do vetor de característica. Os experimentos foram conduzid...
متن کاملPrediction-based Approaches to Construct the Energy Map for Wireless Sensor Networks
The key challenge in the design of wireless sensor networks is maximizing their lifetime. The information about the amount of available energy in each part of the network is called the energy map and can be useful to increase the lifetime of the network. In this paper, we address the problem of constructing the energy map of a wireless sensor network using prediction-based approaches. We also p...
متن کاملGeracao Automatica de Paineis de Controle para Analise de Mobilidade Urbana Utilizando Redes Complexas
In this paper we describe an automatic generator to support the data scientist to construct, in a user-friendly way, dashboards from data represented as networks. The generator called SBINet (Semantic for Business Intelligence from Networks) has a semantic layer that, through ontologies, describes the data that represents a network as well as the possible metrics to be calculated in the network...
متن کاملPredição não-linear de series temporais usando redes neurais RBF por decomposição em componentes principais
This thesis proposes a new technique for non-linear time series forecasting basedupon Radial Basis Function Neural Networks and the Karhunen-Loève Transform. Asignificant performance improvement is obtained with the novel technique in comparisonwith usual prediction methods. By obtaining the neural network centers from the data setsub-spaces − or data set principal components − ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RITA
دوره 22 شماره
صفحات -
تاریخ انتشار 2015